
2017 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY 

SYMPOSIUM 
AUTONOMOUS GROUND SYSTEMS (AGS) TECHNICAL SESSION 

AUGUST 8-10, 2017 - NOVI, MICHIGAN 

 
 

LEVERAGING HIGH-FIDELITY SIMULATION TO EVALUATE 
AUTONOMY ALGORITHM SAFETY 

Ryan Penning 
James English 
Daniel Melanz 
Brett Limone 

Energid Technologies 
Cambridge, MA 

 Paul Muench, PhD 
David Bednarz, PhD 

US Army TARDEC 
Warren, MI 

 
ABSTRACT 

The age of large autonomous ground vehicles has arrived. Wherever vehicles are used, 

autonomy is desired and, in most cases, being studied and developed. The last barrier is to prove 

to decision makers (and the general public) that these autonomous systems are safe.  This paper 

describes a rigorous safety testing environment for large autonomous vehicles. Our approach to 

this borrows elements from game theory, where multiple competing players each attempt to 

maximize their payout. With this construct, we can model an environment that as an agent that 

seeks poor performance in an effort to find the rare corner cases that can lead to automation 

failure. 

 
INTRODUCTION 

The age of large autonomous ground vehicles 

has arrived. More autonomy is desired wherever 

vehicles are used in repetitive, dirty, and 

dangerous tasks. Vehicle autonomy is actively 

being researched and developed by many large 

commercial and government entities. John Deere 

makes automated harvesters, Caterpillar makes 

automated mining trucks, Google makes self-

driving passenger vehicles, and the Army makes 

automated transport vehicles. In all this effort, 

arguably the greatest near-term value of this 

technology lies with the military, as automating 

military logistics vehicles will both increase 

productivity and keep Americans away from 

combat risks. The military’s needs correspond to 

what is likely to be the first transformative fielding 

of large-vehicle autonomy. 

 

PROBLEM DESCRIPTION 
 Now, autonomous large vehicles are carefully 

watched and guided. John Deere’s harvesters have 

monitors in the cab, Caterpillar restricts 

application, Google has passive drivers, and the 

Army tests vehicles in cleared and walled areas. 

The disappointing lack of fielding in many 

domains comes from concerns over safety. The 

autonomy algorithms are not sufficiently robust, 

and the consequences of failure—a runaway 

multi-ton vehicle—too high. 

Researchers are trying to address the worry over 

safety through hardware testing. Systems are run 

through exercises and studies in the field. But 

these are often seen as inadequate. Funding is 

(always) limited, and it is impossible to reproduce 

the great variety of events that a fielded 

autonomous system will encounter over its life. 

The main obstacle to acceptance is uncertainty in 

how the systems will react to untested conditions. 

As a result, the tests do not convince safety 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 2 of 18 

regulatory boards and the autonomy technology 

languishes unfielded.  

The best and only answer to this problem lies in 

digital simulation. Simulation can support many 

more hours of testing in a greater variety of 

situations at a lower cost. It scales to more and 

larger computers, runs day and night, and is 100% 

safe. Digital simulation can be combined with 

hardware components (a hardware-in-the-loop 

approach) to add realism and incorporate 

proprietary algorithms (such as those in sensors 

and autopilots). A large body of research supports 

sensor simulation, including for cameras, lidar, 

GPS, and radar, as well as simulation of vehicles 

and terrain. Many new sensor modeling 

techniques leverage GPU programming to speed 

calculation and quality. And parallel 

implementation across multiple computers, each 

with multiple graphics cards, has created a faster 

computing environment for simulation. 

Digital simulation, though, carries two pressing 

issues. It has in the past offered poorer fidelity 

than hardware testing, with results that did not 

carry the engineering or psychological weight of 

field tests. Simulation also has not, through 

parametric and Monte Carlo studies, offered 

adequate coverage of the situations and 

environments that lead to failure. The corner cases 

that fail, in the real world, appear as vanishing 

probability events in most simulation models. This 

is due significantly to inaccurate probability 

distributions being applied to Monte Carlo 

simulation parameters. 

The problem has deep roots, as many probability 

distributions are not even knowable. They may 

depend on unstudied phenomena, human 

activities, or one-time events. Variables not even 

having probability distributions are regarded as 

profoundly unknown. It is the neglect of 

profoundly unknown variables that drives many 

simulations to discredit and disuse—they do not 

provide results that are accurate enough, based on 

wise assessment from subject matter experts, to 

support mission planning and execution.  

Yet the problem runs even deeper than this. 

Often in real-world situations there are multiple 

agents involved, each attempting to maximize 

their own set of metrics and produce the outcome 

most desirable to them. The optimal behavior of 

each agent is dependent on its competitors’ 

behavior. The resulting problem can be 

staggeringly complex: multiple independent 

systems, each adapting to the others’ behavior and 

to the environment, with system dynamics, 

sensors, control algorithms and other factors—

some profoundly unknown—all determining the 

resulting system performance and safety. These 

effects compound to render the problem 

intractable (and prohibitively expensive) to solve 

via traditional hardware testing. A better way must 

be found. 

 

PREVIOUS WORK 
Basic Autonomy Validation 
Currently, there are a number of different 

approaches to validating autonomy algorithms. 

Traditionally, and most simplistically, there is the 

standard test matrix approach. This approach sets 

up and tests combinations of conditions and 

behaviors in an attempt to determine what 

produces a system failure. This approach is 

reasonable for systems with a small number of 

discrete variables. However, as the number of 

variables grows, the number of possible 

combinations grows exponentially, and the 

problem becomes intractable. This is exacerbated 

by the introduction of continuous variables that 

can take any value. Many researchers have 

recognized these shortcomings, and have devised 

alternative means of validation that seek out 

failures.  Schultz et al. proposed using genetic 

algorithms to attempt to find failure modes [1]. 

This transformed evaluation into an optimization 

problem that attempts to identify failure modes by 

maximizing a usefulness metric.  Similarly, 

Wegener and Bühler used an evolutionary 

algorithm to evaluate an autonomous parking 

system [2].  



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 3 of 18 

 

Game Theory in Robotics 
A related body of work also currently exists that 

uses game theoretic constructs in the control of 

cooperative robot teams. Emery-Montemerlo et al. 

posed a robotic soccer team as a partially 

observable stochastic game to determine the best 

actions for each individual player to take, given 

the uncertainty surrounding the roles of the 

opposing players. They used the partial 

observability approach to logically reason about 

uncertainty in the world state, in determining these 

actions [3].  Vidal et al. utilized game theory in a 

two team pursuit problem, in which a team 

attempts to evade pursuit by an opposing force of 

unmanned ground and aerial vehicles [4]. In this, 

the pursuing team has no knowledge of the pursuit 

area, and must simultaneously reason about the 

environment and construct a model of it as the 

game evolves. By casting the game as a 

probabilistic search problem, they established both 

local and global maxima search routines, and 

demonstrated success in tracking and pursuit. 

Lygeros et al. demonstrated the successful use of a 

game theoretic construction of an automated 

highway system [5]. In their approach, a set of 

autonomous vehicles is controlled, and multiple 

metrics are optimized on a simulated fully 

autonomous highway. The focus is on when it is 

optimal for individual vehicles to join/leave a 

“platoon” of other vehicles traveling on a similar 

trajectory, and how best to safely change lanes.  

 

Pareto Optimality 
The science of Multi-Objective Optimization 

(MOO), where it is desired to extremize multiple 

objective functions (such as autonomy metrics) is 

relevant. A good overview is given in [6]. This is 

closely related to set-based design, as described in 

[7]. Using the nomenclature of [8], given a set of 

functions of vector x, { )(xiF }, MOO concerns the 

following 

 

)](),...(),([)(minimize
21 xxxxF

x kFFF  (1) 

i.e., minimize a vector of independent functions, 

subject to 

mjg j ,...,2,1,0)( x
 

(2) 

and 

elhl ,...,2,1,0)( x
 

(3) 

In general, the solution over X is not defined. 

Except in the rarest of cases, there is no one value 

of x that optimizes all the independent )(xiF  

functions. What is often used in literature and 

study as a substitute for a complete solution is a 

set of domain values that provide a special 

property called Pareto Optimality [8]. This is a 

value of x that cannot be changed without making 

at least one of the )(xiF  worse.  

The randomizing-optimizing framework 

presented in this paper gives a segmented form of 

Pareto optimiality. Instead of there being no 

change in that improves any function )(xiF  while 

leaving the other functions unchanged or 

improved, instead no change in segment 1x  can 

improve )(1 xF , no change in segment 2x  can 

improve )(2 xF , and so forth. This solution form 

has a different set of properties. 

 

APPROACH 
Monte Carlo Simulation 
The techniques in this paper build on Monte 

Carlo methods. This approach uses random 

number generation to solve engineering, science, 

and math problems. It was invented in the 1940s 

by Stanislaw Ulam and first implemented by John 

von Neumann [9]. Randomization had been used 

before the invention to estimate uncertainties—

what distinguishes Monte Carlo methods is the use 

of randomization to solve deterministic problems. 

For use with simulation, Monte Carlo methods 

typically take probability distribution functions for 

input parameters—mass properties, friction, 

sensor noise—and calculate probability 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 4 of 18 

distribution functions for output parameters. 

Monte Carlo simulation can convert probability 

distributions of terrain slope into probability of 

successful vehicle navigation, for example. 

Monte Carlo simulation is powerful because 

simulation without randomization is inaccurate. It 

is never possible to precisely capture and simulate 

a real-world parameter. Weight is always a little 

different, friction a little different, lengths a little 

different. Temperature alone changes physical 

parameters. The power of Monte Carlo simulation 

lies in its ability to capture a range of values that 

contain the true values. The parameters for any 

real scenario all lie within the probability 

distributions of a correctly configured Monte 

Carlo simulation. 

 

Optimization 
The framework being developed in this paper 

also builds on existing methods for numerical 

optimization. Numerical optimization is widely 

used for control and analysis. For control, it 

enables calculation of the best inputs to the system 

to achieve a desired outcome. Minimizing travel 

time or distance traversed is used widely and 

regularly, for example. Optimization produces 

algorithms that drive engines, communications, 

and autopilots. For analysis, optimization provides 

perspective on how well or poorly a system can 

possibly perform. It allows the potential of a 

system to be measured and improved, and it can 

be used to find flaws. A design of a modern 

vehicle requires analyses to be performed on the 

many components use in choosing shape, size, 

structure, materials properties, and placements. 

 

Randomizing Optimizing 
The framework described in this article is built 

on a core algorithm called the randomizing 

optimizer. This core, depicted in Figure 1 is 

intended to embrace the uncertainty inherent in 

modeling complex systems, and use it to actively 

seek out failure modes and conditions. It captures 

the capabilities of both Monte Carlo simulation 

and numerical optimization. The general idea 

behind this approach is that a metric based on 

output statistics from a Monte Carlo analysis is 

optimized over a set of domain values (that can 

represent either unknowns or design parameters).  

For any randomizing-optimizing run there are 

four important sets of data: 1) fixed a priori 

information, 2) domain values, 3) random 

variables, and 4) result values. The fixed a priori 

information remains the same over all simulation 

runs. This information represents all parameters of 

the system that are assumed to be known 

precisely, and which remain constant regardless of 

system state or inputs. For an autonomous vehicle 

system, this might include engine gear ratios, tire 

radius, and other similar mechanical system 

properties. The domain values X are the variables 

over which the system is optimized. These 

variables represent profoundly unknown values in 

the system, for which even probability 

distributions are unknown. Random variables 

represent a set of system parameters which are 

known only through their statistical distributions. 

For example, in an autonomous vehicle. The total 

cargo and passenger weight will vary depending 

on how many people and what items are in the 

vehicle. However, the maximum possible loading, 

as well as the typical number of passengers can be 

estimated. These randomized variables are then 

sampled for each individual run within a Monte 

Carlo experiment set. A particular set of result 

parameters y is then logged for each run. These 

result values might be total time to execute, 

distance to closest collision, or other similar high-

level parameters that may indicate a lower-level 

behavioral change during the run. From these 

multiple runs, statistics on the result values are 

calculated and measured (with a scalar metric µ). 

This whole process can be viewed as a 

multivariable function with scalar output, taking 

the domain values as input and the measurement 

of the result statistics as the output. This function 

is optimized (minimum or maximum equally fits) 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 5 of 18 

using the Nelder-Mead algorithm [10,11] (or 

similar) over the domain values. 

The set of all available domain variables in the 

simulation is . The domain variables being 

modified in a given experiment is , where 

 

(4) 

Similarly, if the time varying simulation state is 

defined as , the output variable for a single 

simulation sample i is defined as , and which is 

calculated using the output variable mapping : 

 

 

(5) 

The state itself is affected by the two inputs to a 

given run: the value of the randomized variables 

for trial i , and the domain variable values. (2) 

can therefore be expressed more directly as: 

 

(6) 

These output values are concatenated, and the 

resulting collection Y and the distribution metric 

function definition  are used to calculate the 

distribution metric µ: 

) (7) 

In this process, friction, for example, could fall 

within any of the first three data sets. If considered 

a priori knowledge, friction would be known 

precisely and we would be inquiring into behavior 

with that friction value present. If part of the 

domain variables, we would be seeking to 

understand the effect of unknown friction and, for 

example, find any friction values that produce 

anomalous behavior. If part of the randomized 

variable set, friction would be known though its 

statistics, and we would be studying the effect of 

some other parameter on behavior within this 

friction environment. 

In this approach, an important distinction is 

made of three levels of knowledge about a 

parameter. We can know its value, know its 

statistical distribution, or know only theoretical or 

common-sense limits on its value. If a parameter’s 

value is known, it is just part of the fixed 

information. If its statistics are known, it is a 

random variable. And if its statistical distribution 

is not even known, it becomes a domain value. 

Optimization
Algorithm

Configurable at runtime

Iterative
Optimization

Loop

μ

z1

z2

Bounds on
Parameters of Interest

x , x , x , ...1 2 3

Output
Data Map

Simulation

 ...

Distribution
Metric

 ...

Distribution

Monte Carlo

Randomized
Runs

y , y , y , ...1 2 3

Input
Data Map

Scalar Multivariable Function

Figure 1: Starting architecture for randomizing/optimizing simulation. This approach randomizes one metric on a distribution 

over one set of variables. 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 6 of 18 

The randomizing-optimizing framework 

accommodates all levels of knowledge. Its overall 

architecture is that shown in Figure 1. 

The idea behind this architecture is to formally 

define algorithms and selections that can be 

configured and exchanged. The optimization 

algorithm in the initial implementation, for 

example, can be Nelder-Mead [10-12], Hook-

Jeeves[13-15], multidirectional search [16,17], or 

implicit filtering [18,19]. The input and output 

data maps, distribution metric, and simulation can 

similarly be exchanged. 

 

Multioptimization 
In many of the issues raised by vehicle 

autonomy, there is no single metric that can be 

optimized in an isolated manner and yield 

meaningful results. Rather, the system is operating 

in an environment of improvement, with multiple 

independent agents attempting to maximize their 

own payoff. For example, consider the problem of 

a vehicle travelling over unknown terrain. It is 

desirable to know what type of terrain is likely to 

cause a failure in the system. Here, the behavior of 

the vehicle autonomy algorithm is able to react 

and adapt to the terrain. In our approach, the 

character of the terrain is also treated as an 

adaptive agent, in that it too can adapt to the 

driver’s response, in an attempt to always provide 

an environment it considers most likely to result in 

vehicle failure. To accommodate such scenarios, 

the core randomizing-optimizing architecture 

above can be extended by providing multiple 

metrics, which may be competing, and optimizing 

them over subsets of the unknown parameters. 

This multioptimization approach is, in essence, an 

application of the alternating maximization 

algorithm, with the integration of the 

randomizing-optimizer to account for system 

uncertainty. It is illustrated in Figure 2. 

Optimization 1

Optimization 2

Optimization P

 
Figure 2: The multioptimization approach. The idea is to 

sequentially transition among a set of P optimizations. One 

way to sequence is to repeatedly go through them in order. 

Each optimization optimizes a different metric over a 

different subset of the state, using as the other part of the 

state the results from the previous optimization. Other 

possibilities may provide advantage, however. 

Together, the ideas of Figure 1 and Figure 2 give 

an architecture as shown in Figure 3. Note that the 

starting architecture shown in Figure 1 is one 

configuration of the more general Figure 3 

architecture (found by using only P=1 

components). 

Here, as before, the domain variables for 

randomizing optimizer j are defined to be  

 

(8) 

Similarly, the output of trial i for randomizing 

optimizer j are defined as 

 

(9) 

The simulation output value for sample i is a 

function of the sampled values of the randomized 

variables for this randomizing optimizer and trial, 

, and the domain variable values  for this 

Monte Carlo run: 

 

(10) 

The distribution metric  for optimizer j is then 

is then calculated from , the set of all : 

) (11) 

Multioptimization can be used to better find 

corner cases in an environment of improvement 

(such as one guided by a human or one subject to 

adaptive control algorithms). In these cases, the 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 7 of 18 

worst case environment can be sought out subject 

to the best case response. This approach is 

inspired by game theory where multiple agents 

seek disparate goals [20,21]. 

 

 
Figure 3: Multioptimization operation. Inputs and outputs 

are shared among optimization components, each of which 

can be run any number of times in any order to achieve a 

final result. All the algorithms and data maps (shown as gray 

boxes) and the data selections (x and y) can be unique to 

each component. 

Alternating maximization has been shown to 

yield a globally optimal solution when the metric 

function is smooth and jointly convex over each of 

the member’s strategies [22]. That is, when each 

 is smooth and convex over all . For the 

general application to vehicle problems, these 

assumptions cannot be made, and the system can 

only be assumed to be locally optimal. However, 

by taking a simulated annealing approach and 

randomizing the starting strategies, a globally 

optimal solution can be found. In practice, this is 

equivalent to finding various failure modes of the 

system.  

 

Nested Optimization 
The above model does not always find strictly 

optimal behavior. That this is so can easily be seen 

by looking at a simple representative function. Say 

there are two agents playing the game rock-paper-

scissors. In this game, each player choses one of 

the three options, with rock beating scissors, paper 

beating rock, and scissors beating paper.  

Applying this game to the above framework with 

two components, one for each player, gives cycles. 

Say player 1 starts with an always-play-rock 

strategy. Optimizing for player 2 will give an 

always-play-paper strategy. Then optimizing for 

player 1 will give an always-play-scissors 

strategy. This will then on optimizing again for 

player 2 give an always-play-rock-strategy. This 

cycle will continue unabated. 

When seeking strict optimization, what we 

would like to see is the discovery of simultaneous 

optimization. To do this, we select a nested 

optimization approach, as shown below. 

 

Optimization
Algorithm

Configurable at runtime

Iterative
Optimization

Loop

μ

z1

z2

Bounds on
Parameters of Interest

x , x , x , ...1 2 3

Output
Data Map

Simulation

 ...

Distribution
Metric

 ...

Distribution

Monte Carlo

Randomized
Runs

y , y , y , ...1 2 3

Input
Data Map

Scalar Multivariable Function  
Figure 4: The nested optimization approach. This technique 

seeks strict optimization. 

Generally, the nested-optimization framework 

gives better results on basic problems, but takes a 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 8 of 18 

long time to run because each step out the 

optimization in the outer loop must execute a full 

optimization in the inner loop. 

 

SIMULATION CAPABILITIES 
To meaningfully apply the frameworks discussed 

above, the ability to accurately model the 

behaviors of all involved systems is critical. These 

behaviors can be driven by system mechanics and 

dynamics, sensor capabilities and behaviors 

(including noise and distortion), control system 

functionality and the interaction between various 

systems, and between each system and its 

environment. We have developed a 

comprehensive, high-fidelity simulation engine 

that can capture these behaviors and their complex 

interplay.  

 

Dynamic Simulation 
Once the sensors provide an estimated state, and 

autonomy control algorithms determine the 

appropriate action, the final necessary piece is to 

ensure the simulated system responds 

appropriately and accurately to these inputs, and 

interactions realistically with its virtual 

environment. To accomplish this successfully, a 

number of components must be simulated. 

Constrained mechanisms must behave properly, 

reaction forces between the system and other 

objects must be computed, the interaction of the 

system and surrounding terrain must be modeled 

to a sufficient level of fidelity, and the system 

actuators must produce a realistic response, given 

the command provided by the autonomy 

algorithms. The autonomy testing environment 

under development provides all of these 

capabilities, while allowing users to integrate their 

own simulation components, as discussed above. 

The following details our approach to modelling 

the major components of autonomous systems.   

To begin, dynamic simulation requires 

calculating an accurate force response. In the 

autonomy testing environment, force response is 

modeled as a function of material type, object 

positions, and object velocities. A physics-based 

force response model that returns a force as a 

function of these properties is applied within the 

software framework.     

Since several models may be employed for force 

response, and developers of the toolkit may want 

to add their own, the architecture was constructed 

to be easily extendable.  Any number of force 

processors can be used within the simulation, and 

they can be selected using the surface properties of 

the objects in contact within the simulated 

environment. By architecting the system in this 

way, developers have complete control over the 

force feedback algorithms used.  It accommodates, 

for example, changing the way that frictional 

forces are calculate without having to change 

other aspects of the force calculation.    

A simple spring displacement model for the 

collision response force is widely used. It is 

implemented using knowledge of the penetration 

distance between two intersecting physical 

extents.  This model has the advantage of 

returning force as a function of force applied and 

is well suited for the robotics application domain.    

Figure 5: shows a graphical representation of the 

displacement model.  The line of action is the line 

normal to both colliding surfaces and points in the 

direction of the resulting force for Surface 1, and 

in the direction opposite the force for Surface 2.  

The line of action is obtained as a byproduct of the 

shape or GJK penetration depth calculation.  

Friction forces can then calculated using a 

breaking-spring model. 

 

Penetration Distance

Support Points Returned 

from GJK Algorithm

Uncompressed Length

Penetration Distance (X)

Fc = -kX

 
Figure 5: Spring Displacement Model for Force 

Computation. 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 9 of 18 

After contact forces are calculated as described 

above, the software applies these forces to an 

articulated dynamics model. The software includes 

two dynamic simulation methods:  the Articulated 

Body Inertia Algorithm and the Composite Rigid-

Body Inertia Algorithm.  The Order(N) 

Articulated Body Inertia algorithm is best for very 

large manipulators. The Order(N 3) Composite 

Rigid-Body Inertia algorithm is best for smaller 

manipulators.  These techniques are implemented 

for both fixed-base and free-base manipulators.   

Particle Simulation 
The autonomy testing environment offers a 

particle-based terrain simulation for complex 

modelling of granular material in Actin.  This 

simulator is tightly integrated with Actin’s 

dynamic simulation system for robotic 

manipulators and is implemented using NVIDIA’s 

CUDA platform for processing on compatible 

graphical processing units (GPUs).  

Interaction between particles and other 

manipulators in Actin is based on the penetration 

distance between particle spheres and Actin shape 

primitives used as bounding volumes for the 

manipulator links. The general simulation loop is 

shown in the figure below.  

The particle system simulator has the ability to 

translate over large terrains. When a model is 

loaded that has a compatible terrain shape then 

this capability is enabled. The particle system can 

be attached to a mobile robot and will then 

translate over the terrain simulating a specified 

depth of the terrain surface under the robot.  

The terrain can be dynamically updated to reflect 

deformations in the underlying particle bed. At 

every time step, the terrain mesh update algorithm 

performs a check across all of the terrain vertices 

to fit the nearest particle position. The algorithm is 

implemented completely in parallel using Nvidia’s 

CUDA platform for processing on compatible 

graphical processing units (GPUs). As shown in 

Figure 6 this powerful utility can be used with 

Actin’s terrain windowing techniques to simulate 

high fidelity vehicle terrain interaction over large 

areas. 

Figure 6: The terrain update functionality allows high fidelity vehicle terrain interaction over large areas. The Particle 

Simulation can translate over large terrains when an terrain shape is present in the model and the particle system “manipulator” 

is attached to a mobile robot (as shown in the inset). 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 10 of 18 

Figure 7: The particle simulation manages calling methods 

and marshaling data between the CPU and GPU. 

 

Vehicle Drivetrain Simulation 
Actin also provides the ability to simulate 

components of a vehicle drivetrain, including the 

engine, transmission and shifting logic, and 

differentials. These components can then be 

combined to model the actual vehicle drivetrain 

more completely. Each of these components has 

been developed such that they can be augmented 

or replaced by users who wish to develop their 

own models within Actin, or integrate third-party 

simulation packages. Example drivetrain 

configurations for various vehicles drive types are 

shown below. 

 

 
Figure 8: Drivetrain configuration for different vehicles. 

Sensor Simulation 
The ability to accurately simulate sensor outputs 

is critical to providing a realistic estimate of the 

true behavior of an autonomous system. Because 

these systems rely on sensing to determine not 

only their own state, but the state of the world 

around them, a faulty sensor reading (or faulty 

interpretation) can result in catastrophic failure. 

Just as real world systems use these to analyze the 

physical environment, Actin allows simulated 

systems to use these sensor models to analyze 

their virtual environment. The autonomy testing 

environment offers a range of different sensor 

simulation capabilities, and provides an 

architecture that makes the development of new 

sensor types easy. Each of these sensors can be 

attached to any portion of an autonomous system, 

including distal links of articulated mechanisms. 

In addition to the sensor simulations discussed 

below, the software offers the capability to 

simulate GPS sensors, accelerometers, and other 

common sensor types used for navigation, 

obstacle avoidance and other control tasks in 

robotics and autonomous systems.  

 

Camera/Image Sensor Simulation 
Several camera simulations are included, ranging 

from simple but efficient OpenGL-based 

rendering of textured geometry to a state-of-the-art 

GPU-based ray tracing system. Users can select 

the level of accuracy and computation needed for 

their particular application. 

As a first step beyond basic textured rendering, 

users can utilize a simulated High Dynamic Range 

camera sensor, and an associated configuration 

plugin. This tool makes use of the OpenGL 

Shading Language (GLSL), allowing for efficient, 

highly parallelized processing of images. It also 

provides the capacity for users to define additional 

effects to be applied to the scene. These effects 

could include starbursts (due to diffraction) around 

bright light sources, or (as is already implemented) 

bloom effects where light sources also affect their 

surrounding pixels.  



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 11 of 18 

 

 
Figure 9: Example HDR image with bloom effect (left), and 

the targeted real-world image, right. 

To address the shortcomings of local rendering 

discussed above, we also offer ray traced 

rendering in a form that can be executed on PC 

hardware in real time. Ray tracing is a global 

illumination approach that generates a rendering 

by modeling how light rays react and interact 

within a scene. This allows the modelling of 

advanced environmental effects, such as bright 

sunlight, cloud cover, rain, fog, and dust. This 

allows image sensor degradation to be more 

accurately modeled. There are three key 

components to this approach: the simulated 

eyepoint or camera, the virtual screen through 

which rays are cast, and the objects within the 

scene itself. To generate an image of the scene, 

rays are cast from the eye point through the pixels 

of the virtual screen, and into the scene, as shown 

in Figure 10. These rays then traverse the scene 

until they either impact an object, or pass out of 

the bounds of the scene. 

 

 
Figure 10: Basic ray tracing algorithm (image: 

wikimedia.org). The software supports ray tracing in real 

time on ordinary PCs. 

When rays intersect an object, there are several 

possible behaviors (or combinations of behaviors) 

that can take place. A ray may be absorbed by the 

surface, it can reflect off of the surface, or it can 

refract through the surface (and the body of the 

object). Any combination of these three behaviors 

is also possible (and is in fact, likely for realistic 

materials). For example, the surface of a glass 

sphere will both reflect a portion of the light 

incident upon it, and refract a portion of it. In 

addition, some small amount may be attenuated 

(absorbed) by the object itself. In addition to 

reflective and refractive rays, a shadow ray is sent 

from the intersection point toward each light in the 

scene. If this ray intersects another object prior to 

reaching the light, the point lies in shadow, and 

will be shaded as such. The virtual screen or 

image is used to map the rays cast into the scene 

to pixels that will be displayed by the raster-based 

display.  

This capability leverages NVIDIA’s Optix ray 

tracing library. This library utilizes NVIDIA’s 

popular CUDA parallelization library, both of 

which are constructed specifically for use on 

NVIDIA’s GPU computing hardware.  

The following image was generated using ray-

traced rendering within the Actin framework.  The 

scene graph was automatically converted, and 

textures transferred to the GPU. On lower end 

hardware (Quadro K1100M graphics card), a 

framerate of approximately 2-3FPS is achieved, 

while framerates of approximately 25-30FPS are 

achieved using the Titan X GPU from NVIDIA.  

 

 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 12 of 18 

 
Figure 11: Example real-time ray traced image using the 

software, including shadows and texturing for terrain and 

truck surfaces. Shadowing and reflection are emergent 

behaviors.  

Radar Sensor Simulation 
A simulation was developed for the Delphi ESR 

radar used in many automotive and autonomous 

vehicle applications. This radar simulation models 

the major behaviors of a radar system, and 

leverages the rendering and parallelized GPU-

based processing pipelines.  

The first several steps build on a depth map 

generated from the scene, then thresholded and 

contoured to identify individual potential targets. 

The total reflected power from each target is then 

calculated. This power is a function of a surface’s 

distance from the radar sensor, its surface normal 

relative to the sensor normal, and the reflectivity 

properties of the surface. Figure 12 illustrates the 

effect on power each of these contributions can 

have. In these images, a color of white 

corresponds to a factor of 1.0 (that is, the reflected 

power is not reduced at all), while black 

corresponds to factor of 0.0, with no power being 

reflected from that point. The overall process to 

identify radar targets is outlined in Figure 13. 

During the target pruning phase, identified 

targets which would not be identified by the 

sensor are removed from the identified targets list. 

These targets may either be reflecting too little 

power to be detected by the sensor, or outside the 

range of the sensor.  

 
Figure 12: Illustration of how surface angle, reflectivity and 

distance are combined to provide an estimate of total 

reflected power. In this example, the top and bottom blocks 

have relatively high surface reflectively, while the middle 

boxes exhibit low reflectivity.  

 
Figure 13: Simulated radar sensor processing pipeline. To 

ensure efficiency, all steps with the exception of target 

pruning are performed on the GPU. 

LIDAR Simulation 
A simulation was also developed for the 

Velodyne HDL-32E LIDAR sensor. This LIDAR 

unit has 32 lasers mounted vertically on a rotating 

head. The LIDAR head rotates at 600 rpm 

providing angular resolution of 0.16 degree in the 

horizontal and 1.33 degrees in the vertical. The 

unit returns 700,000 points per second in the range 

of 1 to 70 meters from the head with 360 degree 

horizontal by 40 degree vertical field of view.   



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 13 of 18 

The approach taken to simulate the Velodyne 

HDL-32E is to use the OpenGL Z-buffer 

generated by the graphics card to obtain a 

representative sample of 3D points in a 360 degree 

view around the LIDAR unit. The depth buffer 

(also known as z-buffer) is used in OpenGL to 

resolve the distance between two nearby objects to 

determine which objects should be hidden behind 

which others. To simulate the Velodyne HDL-32E 

efficiently, the 360 degree scene around the unit is 

rendered by a virtual camera rotated by a set angle 

at each simulation time step. The Z-buffer of each 

rendered frame is sampled to obtain the proper 

number of 3D scan points and plotted in the scene 

as a 3D point cloud. The simulation frame rate is 

the main constraint for accurate capture of motion 

effects.  The simulation frame rate is the main 

constraint for accurate capture of motion effects.  

The relationship between the scan rate ( scan ) of 

the virtual camera with respect to the simulation 

frame rate ( simr ) and actual LIDAR angular 

velocity ( lidar ) is as follows. 

 
 

 

rad/s
rad/frame

frames/s

lidar
scan

simr


 

 

(12) 

Therefore to achieve the desired scan rate of 10 

revolutions per second at a simulation frame rate 

of 30 Hz, the virtual camera must scan 120 

degrees at each time step.   

The non-linear scan pattern of the HDL-32E 

must be taken into account. In Actin, this is 

implemented based on a mapping of scan azimuth 

and elevation to depth image pixel space using a 

non-linear image distortion model. In this way, the 

depth image is warped based on the distortion 

model and sampled to extract depth measurements 

corresponding to each scan ray. Figure 14 shows 

the resulting simulated non-linear scan projection 

on a flat vertical wall and surrounding flat terrain 

surface.   

 

 
Figure 14: LIDAR simulation with convoy vehicles in Actin 

Viewer showing the correctly simulated hemispherical 

projection of the Velodyne HDL-32E Lidar on to both flat 

terrain and complex shapes. 

Substantial effort has been taken to optimize the 

Velodyne Lidar simulation. The first optimization 

was to render the Lidar views with a multithreaded 

render camera objects and enable OpenGL context 

sharing. In this way the Lidar view is rendered 

using a graphics context that is shared with all 

other views of the scene graph. This optimization 

eliminated latency from frequent graphics context 

switching.   

 

EXAMPLE APPLICATION AND RESULTS 
This example application uses a single 

randomizing optimizer to identify a failure that 

occurs when the collision avoidance system 

commands a rapid braking maneuver to avoid 

colliding with an obstacle. The sudden 

deceleration results in the front end of the vehicle 

diving downwards, and the obstacle exiting the 

field of view of the radar system. With no obstacle 

in view, the vehicle then begins to accelerate once 

again. This failure illustrates the complex 

interplay between sensors, control logic, and 

vehicle dynamics. The scene setup is shown in 

Figure 15 below. 

 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 14 of 18 

 
Figure 15: Collision avoidance scenario. 

Collision Avoidance System 
The collision avoidance logic is based on 

feedback from a simulated radar sensor mounted 

on the autonomous vehicle, as illustrated through 

red markup above. For this scenario, the control 

logic of the collision avoidance system is 

relatively simple to allow specific parts of this 

logic to be more thoroughly studied. No attempt is 

made to steer around an obstacle in the path of the 

vehicle—rather, once the object passes within a 

certain distance of the vehicle, the brakes are 

applied and the vehicle brought to a stop. The 

acceleration/braking response is defined by two 

key parameters: the maximum braking distance, 

and the braking slope.  The maximum braking 

distance defines the farthest range at which a radar 

target will trigger the brakes to begin to be 

applied. The braking slope defines how quickly 

the braking intensity is increased as the target is 

approached.  This behavior is illustrated in Figure 

16 below. 

When the system is within the specified braking 

distance, the braking intensity is increased linearly 

based on the braking slope and max braking range. 

 

 
Figure 16: Collision avoidance control logic. A braking 

intensity of 0 indicates no braking action is being applied, 

while an intensity of 1 is sufficient to lock to the wheels. 

Randomizing Optimizer Configuration 
Domain Variables: To enable the randomizing 

optimizer to efficiently find faults, an appropriate 

set of domain variables is selected to form the 

parameter space of the system. For this 

demonstration, we have chosen to focus solely on 

the effects of the collision avoidance control. 

Given this, the domain variables were chosen to 

be the braking slope and maximum braking range 

defined above.  

Randomized Variables: The randomized 

variables for this scenario were chosen to be items 

that would significantly affect the response of the 

vehicle to sudden accelerations. Here, we’ve 

chosen to randomize both the vehicle payload 

mass and the stiffness of the suspension system 

(both front and rear). Additional factors that could 

be considered include tire and ground coefficient 

of friction, obstacle reflectance properties, and 

radar noise properties. 

Output Variables: As in the previous 

demonstration, the output variable was selected as 

a simple distance measurement. In this case, the 

distance between the autonomous vehicle and the 

obstacle. Note that here, this is the “true” distance 

in the simulation, calculated from its state, rather 

than the distance measured by the radar sensor 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 15 of 18 

(this eliminates any artificial variation in the 

output due to the sensor). 

Distribution Metric: The optimizer attempts to 

maximize the value of the distribution metric, 

which is calculated from the output variables. For 

this demonstration, the distribution metric was 

chosen to be the variance of the output distance. 

This results in the optimizer seeking out areas of 

the parameter space where the system behavior 

varies greatly across the values of the randomized 

variables. This can indicate a transition in system 

behavior, often indicative of an impending failure. 

Results: The newly developed randomizing 

optimizer was run using a representative 

configuration, as illustrated in Figure 15. After 

approximately 118 iterations of the Nelder Mead 

optimizer, the failure point was found. Here, the 

failure mode was substantially similar to that 

observed during live vehicle testing. A sudden 

braking motion causes the front end of the vehicle 

to dive, resulting in a loss of obstacle recognition 

by the radar. The collision avoidance controller 

then allows the system to speed back up. This 

behavior repeats several times before finally 

bringing the vehicle to a stop. An example of the 

changes in vehicle pitch is given in the figure 

below.  

 

 
Figure 17: Difference in vehicle pitch in normal smooth 

braking versus the oscillatory behavior found using 118 

iterations of failure seeking with the randomizing/optimizing 

framework. 

This behavior was found to be especially 

pronounced when the stopping distance was 

relatively far away from the obstacle, and the 

braking slope was set to a steep value. This is 

logical, since at a farther distance from the 

obstacle, smaller diving angles will result in the 

line of sight between sensor and obstacle being 

lost. Similarly, more rapid braking will excite 

more significant dynamics within the vehicle. The 

evolution of both braking distance and slope to 

achieve this result is shown in Figure 18 below. 

 

 
Figure 18: Evolution of collision avoidance parameters 

using the Nelder-Mead optimizer. 

During the configuration and testing of these 

results, several interesting behaviors were 

observed within the randomizing-optimizer 

framework. First, the number of trials within each 

Monte Carlo run has a significant impact on the 

performance of the optimizer, and should be 

chosen carefully. This minimum number required 

to obtain a reasonable estimate of the distribution 

function depends on several factors. As the 

number of randomized variables increases, the 

number of samples must be increased to obtain a 

statistically relevant sample. Similarly, as the 

probability distribution becomes wider, a larger 

number of samples will need to be taken to 

provide coverage of the distribution. For this 

demonstration, to estimate the number of samples 

required, the Monte Carlo function was run with a 

varying number of sample runs, and the 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 16 of 18 

distribution metric recorded. For the two 

randomized parameters under consideration in this 

scenario, the results are shown in Figure 19 below. 

 

 
Figure 19: Estimation of the number of sample runs 

required within the Monte Carlo function. Here, both 

payload mass and suspension stiffness were varied, and the 

distribution metric calculated for a varying number of trials. 

Approximately 75 trials yields stable results. 

Based on these results, 75 trials were used for 

each run of the Monte Carlo function in this 

demonstration. This was selected to yield stable, 

accurate results while limiting the number of 

simulation runs required.  

Another behavior that drives the configuration of 

the framework is the ability of the system to seek 

out failures. For example, in this demonstration, if 

the payload and suspension distributions are 

relatively narrow, it is much less likely that the 

system will experience a failure. As these 

distributions are widened, the probability of 

observing a failure on a given iteration increases. 

Once some trials begin to observe failures, this 

drives changes within the distribution metric, and 

allows the system to more effectively seek out the 

“hot spots” of these failures. For example, in 

Figure 18, prior to iteration 30, the system appears 

to be hunting with no particular direction. At this 

point, the braking distance increases rapidly, 

indicating a strong gradient. Shortly after, similar 

behavior can be observed in the braking slope.  

  

CONCLUSIONS AND FUTURE WORK 
Conclusions 
The framework presented in this paper provides 

the ability to actively seek out failure modes for a 

variety of systems, including autonomous ground 

vehicles and convoys. It offers a number of 

advantages over traditional Monte Carlo-style 

simulations. First, it provides users with a pathway 

to consider profoundly unknown parameters in 

their system analysis. These parameters can have a 

profound effect on the behavior of the system, and 

are difficult or impossible to fully consider in 

traditional approaches. The approach is also 

highly extensible, and can be extended to any 

system which can be digitally modeled. The 

approach also allows users to adjust the accuracy 

of the simulation to meet their specific needs. For 

highly accurate vehicle performance models, third 

party modules can be plugged in to more precisely 

model the components such as the vehicle 

drivetrain, tires and chassis. Finally, because of 

the numerous independent simulation runs, the 

approach lends itself particularly well to 

deployment across multiple processors and 

machines. This parallelization significantly 

improves run times.  

This approach does, however, have its 

limitations. Like any simulation-based approach, 

the results obtained are dependent on the accuracy 

of the underlying simulation. A misunderstanding 

of the underlying physics, or an incorrectly tuned 

set of parameters can identify a failure mode that 

is not present in the true system, or miss a failure 

mode altogether. Additionally, because of the 

large number of simulation runs and the 

complexity of the underlying systems, this is an 

extremely computationally intensive approach. 

This can be mitigated somewhat by the 

parallelization discussed above, but with current 

technologies, the system is suited well for offline 

simulation only. Real-time analysis of failure 

modes would require an order of magnitude 

increase in computing power.   

 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 17 of 18 

Future Work 
While the system presented here is a powerful 

and flexible approach, there are several ways to 

meaningfully extend its capabilities. One 

important planned improvement is to incorporate 

concepts from artificial intelligence/machine 

learning for classification algorithm when the 

system is faced with each new scenario. If it can 

be closely matched with a previous scenario, that 

can provide a logical place to begin looking for 

failures. Here, the machine learning system would 

be trained based on simulation data collected over 

previous analyses. This approach would also allow 

the transfer of knowledge to a fielded system, 

where the classification system can be used to 

identify behaviors and situations where failure is 

imminent, and take the appropriate corrective 

actions to avoid it. 

 

ACKNOWLEDGEMENTS 
The authors wish to thank the United States 

Army Tank Automotive Research, Development 

and Engineering Center for their support of this 

work through Small Business Innovation and 

Research grant W56HZV-15-C-0171. 

 

REFERENCES 
[1] Schultz, Alan C., John J. Grefenstette, and Kenneth A. 

De Jong. "Test and evaluation by genetic 

algorithms." IEEE Expert 8, no. 5 (1993): 9-14. 

[2] Wegener, Joachim, and Oliver Bühler. "Evaluation of 

different fitness functions for the evolutionary testing of 

an autonomous parking system." In Genetic and 

Evolutionary Computation–GECCO 2004, pp. 1400-

1412. Springer Berlin Heidelberg, 2004. 

[3] Emery-Montemerlo, R., Gordon, G., Schneider, J., & 

Thrun, S. (2004). Approximate solutions for partially 

observable stochastic games with common payoffs. In 

Proceedings of the Third International Joint Conference 

on Autonomous Agents and Multiagent Systems 

(AAMAS), (pp. 136–143). Washington, DC, USA. 

IEEE Computer Society. 

[4] Vidal, Rene, Omid Shakernia, H. Jin Kim, David 

Hyunchul Shim, and Shankar Sastry. "Probabilistic 

pursuit-evasion games: theory, implementation, and 

experimental evaluation." Robotics and Automation, 

IEEE Transactions on 18, no. 5 (2002): 662-669. 

[5] Lygeros, John, Datta N. Godbole, and Shankar Sastry. 

"Verified hybrid controllers for automated 

vehicles." Automatic Control, IEEE Transactions on43, 

no. 4 (1998): 522-539. 

[6] R.T. Marler and J.S. Arora, “Survey of Multi-objective 

Optimization Methods for Engineering,” Struct 

Multidisc Otpim, 26, 369-395 (2004). 

[7] S.E. Hannapel, N. Vlahopoulos, and D.J. Singer, 

“Including Principles of Set-based Design in 

Multidisciplinary Design Optimization,” 12th AIAA 

ATIO Conference and 14th AIAA/ISSM 17-19 September 

2012, Indianapolis. 

[8] V. Pareto, Manuale di Economica Politica, Societa 

Editrice Libraria. Milan, 1906. 

(https://books.google.com/books?hl=en&lr=&id=oA6oZ

paIQwoC&oi=fnd&pg=PA1&dq=Pareto+1906&ots=Z0

ZxzKiTtZ&sig=BTlU6C-pRczFHPSb1zumq6JcPDQ) 

[9] Eckhardt, Roger. "Stan Ulam, John Von Neumann, and 

the Monte Carlo Method."Los Alamos Science 15 

(1987): 131-136. 

[10] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. 

Vetterling, Numerical Recipes in C, Cambridge 

University Press, 1990. 

[11] J. A. Nelder and R. Mead, “A Simplex Method for 

Function Minimization,” Computer Journal, vol. 7, pp. 

308-313, 1965. 

[12] C.T. Kelly, “Detection and Remediation of Stagnation in 

the Nelder-Mead Algorithm Using a Sufficient Decrease 

Condition,” SIAM Journal on Optimization, vol. 10, no. 

1, pp. 43-55, 1999. 

[13] V. Torczon, “On the Convergence of Pattern Search 

Algorithms,” SIAM J. Optimization, v. 7, no. 1, pp 1-25, 

1997 

[14] C.T. Kelly, “Iterative Methods for Optimization,” 

SIAM, 1999. 

[15] A.F. Kaupe, "Algorithm 178, Direct Search," Comm. 

ACM v. 6, no. 6, 1963. 

[16] V. Torczon, Multi-Directional Search: A Direct Search 

Algorithm for Parallel Machines, Ph.D. Thesis, Rice 

University, 1989. 

[17] V. Torczon, “On the Convergence of Pattern Search 

Algorithms,” SIAM J. Optimization, v. 7, no. 1, pp 1-25, 

1997. 

[18] R. Hooke and T. A. Jeeves, "'Direct Search' Solution of 

Numerical and Statistical Problems", Journal of the 

ACM, v. 8, pp. 212-229, April 1961.  

[19] P. Gilmore, C.T. Kelly, C.T. Miller, and G.A. Williams, 

“Implicit Filtering and Optimal Design Problems,” 

Progress in Systems and Control Theory, vol. 19, 

Birkhauser, Boston, pp. 159-176, 1995. 

[20] Glicksberg, Irving L. "A Further Generalization of the 

Kakutani Fixed Point Theorem, with Application to 

Nash Equilibrium Points." Proceedings of the American 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Leveraging High-Fidelity Simulation to Evaluate Autonomy Algorithm Safety, Penning, et al. 

 

Page 18 of 18 

Mathematical Society 3, no. 1 (1952): 170-174. 

[21] Muench, Paul,  Bednarz, Dave, Singh, Amandeep and 

Mange, Jeremy. “Mobility as a Game of Timing.” In 

Proceedings of the 2013 Ground Vehicle Systems 

Engineering and Technology Symposium. Troy, MI. 

[22] Bezdek, James C., and Richard J. Hathaway. 

"Convergence of alternating optimization." Neural, 

Parallel & Scientific Computations 11, no. 4 (2003): 

351-368. 

[23] C.T. Kelly, “Detection and Remediation of Stagnation in 

the Nelder-Mead Algorithm Using a Sufficient Decrease 

Condition,” SIAM Journal on Optimization, vol. 10, no. 

1, pp. 43-55, 1999. 

[24] V. Torczon, “On the Convergence of Pattern Search 

Algorithms,” SIAM J. Optimization, v. 7, no. 1, pp 1-25, 

1997 

 


